A comparison of 2- and 3-dimensional mandibular superimposition techniques against Björk's structural superimposition method

2021 
Introduction The purpose of this research was to compare mandibular growth rotation relative to the cranial base in different vertical facial patterns on the basis of multiple 2-dimensional (2D) and 3-dimensional (3D) superimposition methods. Methods Cone-beam computed tomography (CBCT) images taken at a mean interval of 54.8 ± 16.8 months were assessed from a sample of 70 growing patients. Three mandibular superimposition methods were compared against Bjork's structural method: (1) a 2D landmark method (2D-M1), (2) a voxel-based 3D method based on a previously reported method (3D-M1), and (3) a voxel-based 3D method incorporating symphyseal structures as references (3D-M2). After superimposition, the relative change in cranial base lines as depicted in sagittal views were measured for true mandibular rotation. Agreement between methods was assessed with Lin's concordance correlation coefficient, Bland-Altman's limits of agreement, and the Bradley-Blackwood test. Results Lin's concordance correlation coefficients ranged between 0.924 for the 2D-M1 method, 0.695 for the 3D-M1 method, and 0.965 for the 3D-M2 method. Bland-Altman limits of agreement were wide for all but the 3D-M2 method. Finally, the Bradley-Blackwood test of equality of means and variances was significant in all except the 3D-M2 method. Conclusions For time intervals between CBCT volume acquisitions >3 years, the use of the 2D-M1 and 3D-M1 methods is not recommended. There was a high concordance between the 3D-M2 method and Bjork's structural method when assessing mandibular growth rotation using relative changes in cranial base lines. The high concordance was displayed across all vertical facial types and for all time differences between first and second CBCT data acquisitions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []