Self-inhibiting thermal conduction in a high-β, whistler-unstable plasma

2018 
A heat flux in a high-β plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as 1/β. We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of β and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high-β astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and β. For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    30
    Citations
    NaN
    KQI
    []