Photothermal effects from Au–Cu2O core–shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

2016 
Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal–Cu2O nanocrystals have become useful by illuminating Au–Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au–Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au–Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ∼1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au–Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    43
    Citations
    NaN
    KQI
    []