Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events

2019 
Abstract. Gerard C. Bond established a Holocene series of North Atlantic ice-rafted debris events based on quartz and haematite-stained grains recovered from subpolar North Atlantic marine cores. These so-called “Bond events” document nine large-scale and multi-centennial North Atlantic cooling phases that might be linked to a reduced thermohaline circulation. Regardless of the high prominence of the Holocene North Atlantic ice-rafted debris record, there are critical scientific comments on the study: the Holocene Bond curve has not yet been replicated in other marine archives of the North Atlantic and there exist only very few palaeoclimatic studies that indicate all individual Bond events in their own record. Therefore, evidence of consistent hydro-climatic teleconnections between the subpolar North Atlantic and distant regions is not clear. In this context, the Western Mediterranean region presents key hydro-climatic sites for the reconstruction of a teleconnection with the subpolar North Atlantic. In particular, variability in Western Mediterranean winter precipitation might be the result of atmosphere–ocean coupled processes in the outer-tropical North Atlantic realm. Based on an improved Holocene δ 18 O record from Lake Sidi Ali (Middle Atlas, Morocco), we correlate Western Mediterranean precipitation anomalies with North Atlantic Bond events to identify a probable teleconnection between Western Mediterranean winter rains and subpolar North Atlantic cooling phases. Our data show a noticeable similarity between Western Mediterranean winter rain minima and Bond events during the Early Holocene and an opposite pattern during the Late Holocene. There is evidence of an enduring hydro-climatic change in the overall Atlantic atmosphere–ocean system and the response to external forcing during the Middle Holocene. Regarding a potential climatic anomaly around 4.2 ka (Bond event 3) in the Western Mediterranean, a centennial-scale winter rain maximum is generally in-phase with the overall pattern of alternating “wet and cool” and “dry and warm” intervals during the last 5000 years.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    19
    Citations
    NaN
    KQI
    []