Foams generated from viscous non-Newtonian shear-thinning liquids in a continuous multi rotor-stator device

2019 
Abstract Whilst aeration is ubiquitous in the food industry, little work has been done on foams generated from viscous non-Newtonian liquids. We study the production of foams from viscous shear-thinning liquids containing a non-ionic food grade surfactant (PGE 55), Xanthan gum and caster sugar, using a continuous pilot-scale device having twelve rotor-stator pairs. The effects of process parameters (rotor speed, gas-liquid volumetric flowrate ratio (G/L)) and liquid composition (surfactant concentration, Xanthan gum concentration) on foam gas volume fraction and bubble size distribution are elucidated. X-ray micro-Computed Tomography is employed to characterise the 3D microstructure of the foams. Rotor speed and G/L ratio are the dominant factors in determining the gas volume fraction and bubble size distribution. The foams produced exhibit a rich fine texture with high static stability. For a given energy input, a higher G/L ratio results in a higher gas fraction and a smaller bubble size. Industrial relevance Aeration is ubiquitous in the food industry and innovative ways to generate stable foams with fine texture from viscous non-Newtonian media are needed to satisfy the increasing demand for better quality, healthier and cheaper products. The use of continuous multi rotor-stator devices operating in turbulent flow and under atmospheric pressure achieves optimum aeration efficiency and prevents foam expansion. The use of an effective surfactant such as PGE 55 and a thickener such as Xanthan gum help provide the desired fine texture and stability for longer shelf-life. Operating at high gas-liquid ratios achieves the production of finer more uniform foams with less energy input.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    8
    Citations
    NaN
    KQI
    []