Fabrication of bimetallic nanoparticles/multi-walled carbon nanotubes composites for microelectronic circuits

2011 
Abstract A method for the fabrication of electrically-conducting polymer composites has been developed by mixing modified multi-walled carbon nanotubes (MWCNTs) functionalized by bimetallic nanoparticles (Ag/Ni/MWCNTs) into a UV curable resin. MWCNTs were treated by a concentrated H 2 SO 4 /HNO 3 mixture followed by ultrasonication with AgNO 3 and NiSO 4 in an ethylene glycol solution, producing MWCNTs decorated with Ag and Ni nanoparticles. The microstructure and surface morphology of the Ag/Ni/MWCNTs were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectrometry. It was found that the addition sequences of NiSO 4 and AgNO 3 influence the morphology of the Ag/Ni/MWCNTs. The electrically-conducting polymer composites were obtained by dispersing the prefabricated Ag/Ni/MWCNTs in UV curable resin, the curing process of which was tracked by Fourier transform infrared spectroscopy, and the electrical resistance was measured using the four-probe method. The fabrication of microelectronic patterns made by screen printing on different substrates was described.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    8
    Citations
    NaN
    KQI
    []