Microstructures of NiFe/nonmagnetic metal spacer/FeMn films and their influences on exchange coupling

2003 
Ta/NiFe/nonmagnetic metal spacer/FeMn films were prepared by magnetron sputtering. The dependences of the exchange coupling field (H ex) between an antiferromagnetic FeMn layer and a ferromagnetic NiFe layer on the thickness of nonmagnetic metal spacer layers were systematically studied. The results show that the H ex dramatically decreases with the increase in the thicknesses of Bi and Ag spacer layers. However, it gradually decreases with the increase in the thickness of a Cu spacer layer. For a Cu space layer, its crystalline structure is the same as that of NiFe and the lattice parameters of them are close to each other. The Cu layer and FeMn layer will epitaxially grow on the NiFe layer in succession, so the (111) texture of the FeMn layer will not be damaged. As a result, the H ex gradually decreases with the deposition thickness of a Cu layer. For an Ag space layer, its crystalline structure is the same as that of NiFe, but its lattice parameter is very different from that of NiFe. Thus, neither an Ag nor an FeMn layer will epitaxially grow on the NiFe layer and the (111) texture of the FeMn layer will be damaged. The H ex rapidly decreases with the increase in the deposition thickness of an Ag layer. For a Bi spacer layer, not only its crystalline structure but also its lattice parameter is greatly different from that of NiFe. For the same reason, the Bi and FeMn layer cannot epitaxially grow on the NiFe layer. The texture of the FeMn layer will also be damaged. Therefore, the H ex rapidly decreases with the increase in the deposition thickness of a Bi layer as well. However, the research result of X-ray photoelectron spectroscopy indicates that a very small amount of surfactant Bi atoms will migrate to the FeMn layer surface when they are deposited on the NiFe/FeMn interface. Thus, the H ex will hardly decrease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    3
    Citations
    NaN
    KQI
    []