Nuclear Factor Erythroid 2-Related Factor 2 Nuclear Translocation Induces Myofibroblastic Dedifferentiation in Idiopathic Pulmonary Fibrosis

2013 
Abstract Aims: Oxidants have been implicated in the pathophysiology of idiopathic pulmonary fibrosis (IPF), especially in myofibroblastic differentiation. We aimed at testing the hypothesis that nuclear factor erythroid 2-related factor 2 (Nrf2), the main regulator of endogenous antioxidant enzymes, is involved in fibrogenesis via myofibroblastic differentiation. Fibroblasts were cultured from the lungs of eight controls and eight IPF patients. Oxidants–antioxidants balance, nuclear Nrf2 expression, and fibroblast phenotype (α-smooth muscle actin and collagen I expression, proliferation, migration, and contraction) were studied under basal conditions and after Nrf2 knockdown or activation by Nrf2 or Keap1 siRNA transfection. The effects of sulforaphane (SFN), an Nrf2 activator, on the fibroblast phenotype were tested under basal and pro-fibrosis conditions (transforming growth factor β [TGF-β]). Results: Decreased Nrf2 expression was associated with a myofibroblast phenotype in IPF compared with control f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    91
    Citations
    NaN
    KQI
    []