Effect of homogeneous and heterogeneous chemical reactions on peristaltic transport of an MHD micropolar fluid with wall effects

2016 
In this paper, the influence of magnetic field on the dispersion of a solute in peristaltic flow of an incompressible micropolar fluid is studied as a model of fluid transport in the human intestinal system with wall properties. Long wavelength approximation, Taylor's limiting condition, and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. Average effective dispersion coefficient increases with amplitude ratio, which implies that dispersion is more in the presence of peristalsis. It also increases with the cross-viscosity coefficient, heterogeneous chemical reaction rate, and wall parameters. Further, dispersion decreases with micropolar parameter, magnetic parameter, and homogeneous chemical reaction rates. Copyright © 2015 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    2
    Citations
    NaN
    KQI
    []