Impact of Starmerella bacillaris and Zygosaccharomyces bailii on ethanol reduction and Saccharomyces cerevisiae metabolism during mixed wine fermentations

2021 
The bulk of grape juice fermentation is carried out by the yeast Saccharomyces cerevisiae, but non-Saccharomyces yeasts can modulate many sensorial aspects of the final products in ways not well understood. In this study, some of such non-conventional yeasts were screened as mixed starter cultures in a fermentation defined medium in both simultaneous and sequential inoculations. One strain of Starmerella bacillaris and another of Zygosaccharomyces bailii were chosen by their distinct phenotypic footprint and their ability to reduce ethanol levels at the end of fermentation, particularly during simultaneous vinification. S. bacillaris losses viability strongly at the end of mixed fermentation, while Z. bailii remains viable until the end of vinification. Interestingly, for most non-Saccharomyces yeasts, simultaneous inoculation helps for survival at the end of fermentation compared to sequential inoculation. S. cerevisiae viability was unchanged by the presence of the either yeast. Characterization of both strains indicates that S. bacillaris behavior is overall more different from S. cerevisiae than Z. bailii. S. bacillaris has a less strict glucose repression mechanism and molecular markers like catabolite repression kinase Snf1 is quite different in size. Besides, S. cerevisiae transcriptome changes to a bigger degree in the presence of S. bacillaris than when inoculated with Z. bailii. S. bacillaris induces the translation machinery and repress vesicular transport. Both non-Saccharomyces yeast induce S. cerevisiae glycolytic genes, and that may be related to ethanol lowering, but there are specific aspects of carbon-related mechanisms between strains: Z. bailii presence increases the stress-related polysaccharides trehalose and glycogen while S. bacillaris induces gluconeogenesis genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []