Vacuum Packaging of MEMS With Multiple Internal Seal Rings

2008 
A proposed method of design and fabrication of vacuum-packaged microelectromechanical systems (MEMS) and of individual microelectromechanical devices involves the use of multiple internal seal rings (MISRs) in conjunction with vias (through holes plated with metal for electrical contacts). The proposed method is compatible with mass production in a wafer-level fabrication process, in which the dozens of MEMS or individual microelectromechanical devices on a typical wafer are simultaneously vacuum packaged by bonding a capping wafer before the devices are singulated (cut apart by use of a dicing saw). In addition to being compatible with mass production, the proposed method would eliminate the need for some complex and expensive production steps and would yield more reliable vacuum seals. Conventionally, each MEMS or individual microelectromechanical device is fabricated as one of many identical units on a device wafer. Vacuum packaging is accomplished by bonding the device wafer to a capping wafer with metal seal rings (one ring surrounding each unit) that have been formed on the capping wafer. The electrical leads of each unit are laid out on what would otherwise be a flat surface of the device wafer, against which the seal ring is to be pressed for sealing. The resulting pattern of metal lines and their insulating oxide coverings presents a very rough and uneven surface, upon which it is difficult to pattern the sealing metal. Consequently, the seal is prone to leakage unless additional costly and complex planarization steps are performed before patterning the seal ring and bonding the wafers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []