Multiphoton microscope imaging: the behavior of neural progenitor cells in the rostral migratory stream.

2007 
Abstract Neural progenitor cells (NPCs) in the subventricular zone (SVZ) travel a long distance along the rostral migratory stream (RMS) to give rise to interneurons in the olfactory bulb (OB). Using the multiphoton microscope and time-lapse recording techniques we here report the behavior of NPCs in the RMS under both intact and ischemic conditions in living brain slices. The NPCs were visualized in 3-week-old transgenic mice that carry the reporter gene, green fluorescent protein (GFP), driven by the nestin promoter. Cortical brain ischemia was induced by permanent occlusion of the right common carotid artery and the middle cerebral artery. We observed that the RMS contained two populations of NPCs: nonmigrating cells (bridge cells) and migrating cells. Bridge cells enabled migrating cells to travel and also produced new cells in the RMS. The direction of NPC migration in the RMS was bidirectional in both intact and ischemic conditions. Cortical ischemia impeded NPC travel in the RMS next to the lesion area during the early period of ischemia. Cell–cell contact was a prominent feature affecting NPC translocation and migratory direction. These data suggest that behavior and function of nestin-positive NPCs in the RMS are variable. Cell–cell contacts and microenvironmental changes influence NPC behavior in the RMS. This study may provide insights to help in understanding NPC biology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []