Enhancement of solar photocatalytic detoxification by adsorption of porphyrins onto TiO sub 2

1991 
Titanium dioxide (TiO{sub 2}) is a known photocatalyst for solar detoxification of water containing organic contaminants including PCB's and dioxins. Unfortunately, the UV light used by the photocatalyst only comprises about 4% of the strong spectrum. Metalloporphyrins strongly absorb in the visible and near infrared region. Using visible light, we have investigated Ni(II) uroporphyrin (NiUroP), Sn(IV)Cl{sub 2} uroporphyrin (SnUroP) and Sn(IV)Cl{sub 2} tetrakis(p-carboxyphenyl) porphyrin (SnTCPP) as possible enhancers of destruction of a model organic compound, salicylic acid (SA), by means of photosensitization of colloidal TiO{sub 2} particles. All three porphyrins are found to adsorb reversibly onto the colloidal TiO{sub 2} upon variation of pH. Adsorption of porphyrins results in the increased colloidal stability of fine TiO{sub 2} particles in the pH range 5--8. While NiUroP on TiO{sub 2} does not show any enhancement of photodestruction, the adsorption of SnUroP increases the destruction rate compared to that of the bare TiO{sub 2} surface. The effect of ambient oxygen on the observed photolability of the Sn porphyrins and enhancement of photodestruction of SA was also investigated. SnTCPP does not photodecompose upon illumination either in the presence or absence of TiO{sub 2}, but neither does it bind to the photocatalyst at pH 6. more » At pH 4.5 it adsorbs onto TiO{sub 2} but it also photodecompose at this pH. We are attempting to stabilize the adsorbed porphyrins by adding suitable peripheral substituents onto the porphyrin macrocycle. 27 refs., 6 figs. « less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []