Synthesis of porous nitrogen-doped graphene decorated by γ-Fe2O3 nanorings for enhancing microwave absorbing performance

2019 
Abstract Excellent wave absorbers are key materials for reducing electromagnetic radiation pollution. In this work, novel γ-Fe2O3 nanoring/porous nitrogen-doped graphene (γ-Fe2O3 NR/PNG) composites with varying mass ratios were successfully synthesized as lightweight absorbers using a two-step solvothermal method in combination with a partial reduction process. The diameter of the uniform γ-Fe2O3 NRs is approximately 150 nm with a shell thickness of approximately 50 nm. The uniform γ-Fe2O3 NRs are dispersed onto PNG sheets. Compared with pure γ-Fe2O3 NRs and PNG, all γ-Fe2O3 NR/PNG composites exhibit better microwave absorbing performance, among which a γ-Fe2O3 NR/PNG composite with a 4:1 mass ratio of γ-Fe2O3 NR:PNG shows the best absorption over a broad bandwidth for its special nanoring and porous structure and excellent impedance matching. The minimum reflection loss (RLmin) reaches −40.18 dB at 7.80 GHz with a thickness of 2.5 mm; the absorption bandwidth (RL
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    14
    Citations
    NaN
    KQI
    []