A high throughput viability screening method for the marine ectoparasite Neoparamoeba perurans

2020 
The marine protozoan parasite Neoparamoeba perurans has been established as the causative agent for amoebic gill disease (AGD) in Atlantic salmon (Salmo salar). Freshwater bathing is the only routinely used treatment for AGD in Australia while hydrogen peroxide (H2O2) is used in countries with cooler water temperatures. The identification of new treatments that do not rely on either freshwater or H2O2 bathing is highly sought. However, in vitro based methods for high throughput screening of antiparasitic compounds have not been established for this parasite. To this end the present study evaluated two in vitro bioassays based on metabolic energy production and cellular membrane integrity to distinguish between amoebistatic (crenated or pseudocyst forms with recovery possible) and amoebicidal (death) activity. Amoebae were subject to either freshwater, H2O2 or chloramine-T for 4 h treatment and assessed 24 h after recovery. Visualization by microscopy and bioassay assessment 24 h post-treatment confirmed that H2O2 and freshwater are 95% amoebicidal albeit due to different mechanisms of action. These data are consistent with other studies where amoebae have been observed to recover following exposure to these compounds and provide evidence for the inclusion of a recovery component to differentiate between the mechanism of action of amoebicidal and amoebistatic treatments. Together these bioassays are a critical tool for high throughput screening of novel and more effective treatments against AGD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []