Advection of a passive vector field by the Gaussian velocity field with finite correlations in time

2013 
Using the field theoretic renormalization group technique the model of a passive vector field advected by an incompressible turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation). The turbulent environment is given by statistical fluctuations of the velocity field that has a Gaussian distribution with zero mean and defined noise with finite correlations in time. Two-loop analysis of all possible scaling regimes in general d-dimensional space is done in the plane of exponents ɛ − η, where ɛ characterizes the energy spectrum of the velocity field in the inertial range E ∝ k 1 − 2e, and η is related to the correlation time at the wave number k which is scaled as k −2 + η. It is shown that the scaling regimes of the present model of vector advection have essentially different properties than the scaling regimes of the corresponding model of passively advected scalar quantity. The results demonstrate the fact that within the present model of passively advected vector field the internal tensor structure of the advected field can have nontrivial impact on the diffusion processes deep inside in the inertial interval of given turbulent flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []