Molecular drivers of non-alcoholic steatohepatitis are sustained in mild-to-late fibrosis progression in a guinea pig model

2019 
Hepatic fibrosis increases mortality in humans with non-alcoholic steatohepatitis (NASH), but it remains unclear how fibrosis stage and progression affect the pathogenic mechanisms of NASH. This study investigates the transcriptional regulation and the impact of fibrosis stage, of pathways relating to hepatic lipid and cholesterol homeostasis, inflammation and fibrosis using RT-qPCR in the guinea pig NASH model. Animals were fed a chow (4% fat), a high-fat (20% fat, 0.35% cholesterol) or high-fat/high-sucrose (20% fat, 15% sucrose, 0.35% cholesterol) diet for 16 or 25 weeks (n = 7/group/time point). High-fat diets induced NASH. In NASH, markers of hepatic de novo lipogenesis were enhanced (e.g. FASN, > twofold, p twofold, p threefold, p < 0.05) and decreased matrix degradation. Fibrosis stage (mild vs. severe) and progression did generally not affect the expression of the investigated pathways. This suggests that liver dysfunction at the transcriptional level is induced early and maintained throughout fibrosis progression, allowing potential treatments to target dysregulated pathways already at early disease stages. As the guinea pig NASH model mimics several aspects of human molecular pathophysiology, these results may be used to increase the current understanding of NASH pathology and explore future treatment targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    10
    Citations
    NaN
    KQI
    []