Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures

2019 
To increase the computational precision of the finite element method (FEM) for multi-field coupling problems, we proposed a coupling magneto-electro-elastic (MEE) cell-based smoothed radial point interpolation method (CM-CS-RPIM) with the coupling MEE Wilson-\(\theta \) scheme for MEE structures. Generalized approximation field functions were established by using the linearly independent and consistent RPIM shape functions. The basic equations of CM-CS-RPIM were deduced by applying G space theory and the weakened weak formulation to the MEE multi-physics coupling field. Meanwhile, the coupling MEE Wilson-\(\theta \) scheme was proposed. Several numerical examples were modeled, and the behavior of MEE structures was studied under static and dynamic loads. The CM-CS-RPIM outperformed FEM with higher accuracy, convergence, and stability in static and dynamic analysis of MEE structures, even if the meshes were distorted extremely. And it worked well with simplex meshes (triangles or tetrahedrons) that can be automatically generated for complex structures. Therefore, the effectiveness and potential of CM-CS-RPIM were demonstrated for the design of smart devices, such as MEE sensors and energy harvesters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    8
    Citations
    NaN
    KQI
    []