Zebrafish Melanophores Suggest Novel Functions of Cell Chirality in Tissue Formation
2021
Several types of cells show left–right asymmetric behavior, unidirectional rotation, or spiral movements. For example, neutrophil-like differentiated HL60 (dHL60) cells show leftward bias in response to chemoattractant. Neurons extend neurites, creating a clockwise spiral. Platelet cells shows unidirectional spiral arrangements of actin fibers. In the microfabricated culture environment, groups of C2C12 cells (mouse myoblast cell line) were autonomously aligned in a counter-clockwise spiral pattern, and isolated C2C12 cells showed unidirectional spiral pattern of the actin skeleton. This biased directionality suggested that these cells have inherent cell chirality. In addition to these cells, we recently found that melanophores of zebrafish also have an intrinsic cellular chirality that was shown by their counter-clockwise self-rotation. Although this cell chirality is obvious, the function of the cell chirality is still unclear. In this review, we compare the cell chirality of melanophores of zebrafish with other cell chirality and consider the function of cell chirality in morphogenesis.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
0
Citations
NaN
KQI