Wnt/β-catenin signaling, which is activated in odontomas, reduces Sema3A expression to regulate odontogenic epithelial cell proliferation and tooth germ development

2019 
Odontomas, developmental anomalies of tooth germ, frequently occur in familial adenomatous polyposis patients with activated Wnt/β-catenin signaling. However, roles of Wnt/β-catenin signaling in odontomas or odontogenic cells are unclear. Herein, we investigated β-catenin expression in odontomas and functions of Wnt/β-catenin signaling in tooth germ development. β-catenin frequently accumulated in nucleus and/or cellular cytoplasm of odontogenic epithelial cells in human odontoma specimens, immunohistochemically. Wnt/β-catenin signaling inhibited odontogenic epithelial cell proliferation in both cell line and tooth germ development, while inducing immature epithelial bud formation. We identified Semaphorin 3A (Sema3A) as a downstream molecule of Wnt/β-catenin signaling and showed that Wnt/β-catenin signaling-dependent reduction of Sema3A expression resulted in suppressed odontogenic epithelial cell proliferation. Sema3A expression is required in appropriate epithelial budding morphogenesis. These results suggest that Wnt/β-catenin signaling negatively regulates odontogenic epithelial cell proliferation and tooth germ development through decreased-Sema3A expression, and aberrant activation of Wnt/β-catenin signaling may associate with odontoma formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    11
    Citations
    NaN
    KQI
    []