Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.)

2018 
Bananas are one of the most important fruits in tropical and subtropical regions worldwide. Each year, banana plantations expand, but the areas available are mostly dry lands. The establishment of strategies for obtaining drought tolerant cultivars depends on understanding of biological responses at genetic, molecular and biochemical levels. Proteomics is a powerful tool for functional characterization of the response of plants to abiotic stress and little is known about drought tolerance in Musa spp. Therefore, the aim of this study was to identify proteins related to drought tolerance in two contrasting banana genotypes, Prata Ana and BRS Tropical, susceptible and tolerant to drought, respectively. Proteins were extracted from rhizomes of bananas grown under greenhouse conditions with control, irrigated and water deficit regimes. The differential protein expression pattern was established by two-dimensional (2-D) electrophoresis and spots analyzed in nano Q-Tof Micro UPLC. Twenty-three differentially expressed proteins were found in the tolerant genotype (BRS Tropical) under water deficit, with proteins involved in metabolism, defense and transport. Proteins were classified according to known function and biosynthetic pathways. Signaling proteins in response to water stress, especially for the biological function of growth and development of plants cells, were also encountered, whereas heat shock proteins played a significant role. This is the first report of proteomic analysis for drought tolerance in ‘Pome’ and ‘Silk-type’ bananas containing the ‘B’ genome. Our work provides insights into Musa spp. response to drought and data for further studies regarding molecular mechanisms, which determine how Musa spp. cells better overcome environmental perturbations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    7
    Citations
    NaN
    KQI
    []