Pioglitazone prevents alcohol-induced fatty liver in rats through up-regulation of c-Met.

2004 
Abstract Background & Aims: Treatment of steatosis is important in preventing development of fibrosis in alcoholic liver diseases. This study aimed to examine if pioglitazone, an antidiabetic reagent serving as a ligand of peroxisome proliferator-activated receptor gamma (PPARγ), could prevent alcoholic fatty liver. Methods: Rats fed with an ethanol-containing liquid diet were given the reagent at 10 mg/kg per day intragastrically for 6 weeks. Hepatic genes involved in actions of the reagent were mined by transcriptome analyses, and their changes were confirmed by real-time polymerase chain reaction and Western blotting analyses. The direct effects of pioglitazone on primary-cultured hepatocytes were also assessed in vitro. Results: Pioglitazone significantly attenuated steatosis and lipid peroxidation elicited by chronic ethanol exposure without altering insulin resistance. Mechanisms for improving effects of the reagent appeared to involve restoration of the ethanol-induced down-regulation of c-Met and up-regulation of stearoyl-CoA desaturase (SCD). Such effects of pioglitazone on the c-Met signaling pathway resulted from its tyrosine phosphorylation and resultant up-regulation of the apolipoprotein B (apoB)-mediated lipid mobilization from hepatocytes through very low-density lipoprotein (VLDL) as well as down-regulation of sterol regulatory element binding protein (SREBP) -1c and SCD levels and a decrease in triglyceride synthesis in the liver. Conclusions: Pioglitazone activates c-Met and VLDL-dependent lipid retrieval and suppresses triglyceride synthesis and thereby serves as a potentially useful stratagem to attenuate ethanol-induced hepatic steatosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    122
    Citations
    NaN
    KQI
    []