Optimal field-effect transistor operation for high-resolution biochemical measurements

2021 
Field-effect transistors (FETs) are powerful tools for sensitive measurements of numerous biomarkers (e.g., proteins, nucleic acids, and antigen) and gaseous species. Most research studies in this field focused on building discrete devices with high performance. We show that instrumentation that is commonly used in multiple areas of physics and engineering can greatly improve the performance of measurement systems that embed FET-based transducers for biological applications. We review the state-of-the-art instrumentation in the field as applied to sensing with FETs. We show how high-performance dual-gate 2D FETs that we recently developed, when operated using closed-loop proportional–integral–derivative control, can drastically improve both the sensitivity and resolution. We further show that this closed-loop control approach can be extended to commonly used single-gate silicon FETs. The generalizability of the results will allow their application to virtually any previously developed FET-based sensor. Finally, we provide insight into further optimization and performance benefits that can be extracted by using the closed-loop feedback approach for applications in biosensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []