Alanine, arginine, and proline but not glutamine are the feed-back regulators in the liver-alpha cell axis in mice

2019 
Aim: To identify the amino acids that stimulate glucagon secretion in mice and whether the metabolism of these relies on glucagon receptor signaling. Methods: Pancreata of female C57BL/6JRj mice were perfused with 19 individual amino acids (1 mM) and secretion of glucagon was assessed using a specific glucagon radioimmunoassay. Separately, a glucagon receptor antagonist (GRA; 25-2648, 100 mg/kg) or vehicle was administered to female C57BL/6JRj mice three hours prior to an intraperitoneal injection of four different isomolar (in total 7 umol/g body weight) amino acid mixtures; mixture 1: alanine, arginine, cysteine, and proline; mixture 2: asparatate, glutamate, histidine, and lysine; mixture 3: citrulline, methionine, serine, and threonine; and mixture 4: glutamine, leucine, isoleucine, and valine. Blood glucose, plasma glucagon, amino acid, and insulin concentrations were measured using well characterized methodologies. Results: Alanine (P=0.03), arginine (P 0.5) in plasma concentrations of glucagon across mixture 1-4. Plasma concentrations of total amino acids were higher after administration of GRA when mixture 1 (P=0.004) or mixture 3 (P=0.04) were injected. Conclusion: Our data suggest that alanine, arginine, and proline but not glutamine are involved in the liver-alpha cell axis in mice as they all increased glucagon secretion and their disappearance rate was altered by GRA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    2
    Citations
    NaN
    KQI
    []