Discovery of X-ray eclipses from the transient source CXOGC J174540.0-290031 with XMM-Newton

2005 
We present the XMM-Newton observations obtained during four revolutions in Spring and Summer 2004 of CXOGC J174540.0-290031, a moderately bright transient X-ray source, located at only 2.9" from SgrA*. We report the discovery of sharp and deep X-ray eclipses, with a period of 27,961+/-5 s and a duration of about 1,100+/-100 s, observed during the two consecutive XMM revolutions from August 31 to September 2. No deep eclipses were present during the two consecutive XMM revolutions from March 28 to April 1, 2004. The spectra during all four observations are well described with an absorbed power law continuum. While our fits on the power law index over the four observations yield values that are consistent with Gamma=1.6-2.0, there appears to be a significant increase in the column density during the Summer 2004 observations, i.e. the period during which the eclipses are detected. The intrinsic luminosity in the 2-10 keV energy range is almost constant with 1.8-2.3 x 10^34 (d_8kpc)^2 erg/s over the four observations. In the framework of eclipsing semidetached binary systems, we show that the eclipse period constrains the mass of the assumed main-sequence secondary star to less than 1.0 M_odot. Therefore, we deduce that CXOGC J174540.0-290031 is a low-mass X-ray binary (LMXB). Moreover the eclipse duration constrains the mass of the compact object to less than about 60 M_odot, which is consistent with a stellar mass black hole or a neutron star. The absence of deep X-ray eclipses during the Spring 2004 observations could be explained if the centroid of the X-ray emitting region moves from a position on the orbital plane to a point above the compact object, possibly coincident with the base of the jet which was detected in radio at this epoch. [Abstract truncated].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []