Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane bioreactor coupling system.

2021 
Abstract This study evaluated the feasibility of phenol degradation in microbial fuel cell (MFC) and membrane bioreactor (MBR) coupling system, and explored the mechanism of MBR membrane fouling. Four aspects were researched in open and closed circuit conditions: the degradation capacity of the coupling system, the increase of trans-membrane pressure (TMP), and the adhesion of phenol degradation products and microorganisms on the membrane. The results showed that the degradation of phenol and COD in the closed circuit coupling system was higher than that in the open circuit. The micro-electric field can inhibit the growth of TMP and keep dodecamethylcyclohexasiloxane away from the membrane, meanwhile can also reduce the abundance and species diversity of microorganisms. Nevertheless, the micro-electric field could not completely eliminate the membrane fouling due to the fact that the phenol degradation product of ethanethiol, microorganisms of Proteobacteria and Actinobacteria were more favorable on the membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []