Dataset for the synthesis and application of single-component heterogeneous catalysts based on zinc and tin for the cycloaddition of pure, diluted, and impure CO2 to epoxides under mild conditions.

2021 
Abstract The cycloaddition of CO2 to epoxides under mild conditions is a growing field of research and a viable strategy to recycle CO2 in the form of cyclic carbonates as useful intermediates, solvents, and additives. This target requires readily accessible and recyclable catalysts whose synthesis does not involve expensive monomers, multistep procedures, coupling reagents, etc. Additionally, the catalysts should be active under atmospheric pressure and tolerate impurities such as methane and H2S. In a recent manuscript (Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates; Chemical Engineering Journal 422 (2021) 129930) we have developed strategies to prepare efficient heterogeneous catalysts for the cycloaddition reaction of CO2 to epoxides. Such materials consist of dispersions of metal halides (ZnCl2 or SnCl4) on silica support that is further functionalized with ionic liquids bearing nucleophilic halide moieties for cooperative epoxide activation and ring-opening. Herein, we provide useful complementary data for the characterization of the prepared materials in the form of: SEM images of materials (SEM: scanning electron microscope), SEM-EDS images of materials (EDS: Energy-dispersive X-ray spectroscopy), TEM images of materials (TEM: transmission electron microscope); XPS (X-ray photoelectron spectroscopy) survey spectra of most active catalysts and related high-resolution spectra in spectral regions of interest, BET (Brunauer–Emmett–Teller) physisorption isotherms of materials, raw 1H NMR spectra of catalytic reactions to verify the reproducibility of the reaction outcome and identify the reaction products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []