Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease

2018 
Alterations in the mechanical properties of erythrocytes occurring in inflammatory and haematological disorders such as sickle-cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we show that a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than one month enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found that extracellular haem—a haemolytic by-product—induces delayed yet reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    65
    Citations
    NaN
    KQI
    []