Transdifferentiation of Enteroendocrine K-cells into Insulin-expressing Cells
2009
Background: Despite a recent breakthough in human islet transplantation for treating type 1 diabetes mellitus, the limited availability of donor pancreases remains a major obstacle. Endocrine cells within the gut epithelium (enteroendocrine cells) and pancreatic β cells share similar pathways of differentiation during embryonic development. In particular, K-cells that secrete glucose-dependent insulinotropic polypeptide (GIP) have been shown to express many of the key proteins found in β cells. Therefore, we hypothesize that K-cells can be transdifferentiated into β cells because both cells have remarkable similarities in their embryonic development and cellular phenotypes. Methods: K-cells were purified from heterogeneous STC-1 cells originati ng from an endocrine tumor of a mouse intestine. In addition, a K-cell subclone expressing stable Nkx6.1, called “Kn4-cells,” was successfully obtained. In vitro differentiation of K-cells or Kn4-cells into β cells was completed after exendin-4 treatment and serum deprivation. The expressions of insulin mRNA and prot ein were examined by RT-PCR and immunocytochemistry. The interacellular insulin content was also measured. Results: K-cells were found to express glucokinase and GIP as assessed by RT-PCR and Western blot analysis. RT-PCR showed that K-cells also expressed Pdx-1, Neur oD1/Beta2, and MafA, but not Nkx6.1. After exendin-4 treatment and serum deprivation, insulin mRNA and insulin or C-peptide were clearly detected in Kn4-cells. The intracellular insulin content was al so increased significantly in these cells. Conclusion: K-cells are an attractive potential source of insulin-producing cells for treatment of type 1 diabetes mellitus. However, more experiments are necessary to optimize a strategy for converting K-cells into β cells. (Korean Diabetes J 33:475-484, 2009)
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
1
Citations
NaN
KQI