Dimension towers of SICs. I. Aligned SICs and embedded tight frames

2017 
Algebraic number theory relates SIC-POVMs in dimension $d>3$ to those in dimension $d(d-2)$. We define a SIC in dimension $d(d-2)$ to be aligned to a SIC in dimension $d$ if and only if the squares of the overlap phases in dimension $d$ appear as a subset of the overlap phases in dimension $d(d-2)$ in a specified way. We give 19 (mostly numerical) examples of aligned SICs. We conjecture that given any SIC in dimension $d$ there exists an aligned SIC in dimension $d(d-2)$. In all our examples the aligned SIC has lower dimensional equiangular tight frames embedded in it. If $d$ is odd so that a natural tensor product structure exists, we prove that the individual vectors in the aligned SIC have a very special entanglement structure, and the existence of the embedded tight frames follows as a theorem. If $d-2$ is an odd prime number we prove that a complete set of mutually unbiased bases can be obtained by reducing an aligned SIC to this dimension.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []