Energy-efficient stateful logic with magnetic domain walls

2020 
Magnetic domain-wall devices, modulated by the spin-transfer torque or the spin-orbit torque effect, can implement logical operations in a manner that is inherently compact and cascadable. Using circuit simulations with micromagnetics-validated compact models, we evaluate the device requirements for domain-wall logic that has low latency, outperforms scaled CMOS logic in energy efficiency, and remains robust to process variations. We further show how the inherent non-volatility of these devices can be leveraged to construct stateful logic circuits that save energy and area relative to their CMOS counterparts and propose novel logic architectures that exploit the unique advantages of domain-wall devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []