Matrix effect correction with internal flux monitor in radiation waste characterization with the Differential Die-away Technique

2013 
Radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant are measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). The purpose is to assay fissile material quantities present in radioactive waste packages. In the future, old hulls and nozzles containing Ion-Exchange Resin (IER) will be measured. IERs provide moderating properties to the matrix, not encountered during the current measurement. In this context, the Nuclear Measurement Laboratory (NML) of the CEA Cadarache has been asked by AREVA NC to explore the possibility of implementing a matrix effect correction method, based on internal monitor (3He proportional counter) signal correlated to the matrix effect. In order to validate this method, a benchmark was performed with PROMETHEE 6 RD10%), in terms of prompt calibration coefficient (useful signal of fissile materials) and internal monitor signal, considering the complexity of the measurement method and numerical model, and the large range of moderator and absorption ratios. The relationship between the prompt calibration coefficient and the internal monitor signal observed in PROMETHEE 6, both for experience and model, can be fitted with a similar function as the industrial measurement cell, the correlation of which being established by numerical simulation. Regressions from experimental and modelling are almost superimposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    3
    Citations
    NaN
    KQI
    []