Big Data Analytics and Processing Platform in Czech Republic Healthcare

2020 
Big data analytics (BDA) in healthcare has made a positive difference in the integration of Artificial Intelligence (AI) in advancements of analytical capabilities, while lowering the costs of medical care. The aim of this study is to improve the existing healthcare eSystem by implementing a Big Data Analytics (BDA) platform and to meet the requirements of the Czech Republic National Health Service (Tender-Id. VZ0036628, No. Z2017-035520). In addition to providing analytical capabilities on Linux platforms supporting current and near-future AI with machine-learning and data-mining algorithms, there is the need for ethical considerations mandating new ways to preserve privacy, all of which are preconditioned by the growing body of regulations and expectations. The presented BDA platform, has met all requirements (N > 100), including the healthcare industry-standard Transaction Processing Performance Council (TPC-H) decision support benchmark in compliance with the European Union (EU) and the Czech Republic legislations. Currently, the presented Proof of Concept (PoC) that has been upgraded to a production environment has unified isolated parts of Czech Republic healthcare over the past seven months. The reported PoC BDA platform, artefacts, and concepts are transferrable to healthcare systems in other countries interested in developing or upgrading their own national healthcare infrastructure in a cost-effective, secure, scalable and high-performance manner. Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections. In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []