Multiple sclerosis iPSC-derived oligodendroglia conserve their intrinsic properties to functionally interact with axons and glia in vivo

2020 
The remyelination failure in multiple sclerosis (MS) is associated with a migration/differentiation block of oligodendroglia. The reason for this block is highly debated. It could result from disease-related extrinsic regulators of the oligodendroglial biology or reflect MS oligodendrocyte intrinsic properties. To avoid confounding immune-mediated extrinsic effect, we used an immune-deficient, dysmyelinating mouse model, to compare side-by-side induced pluripotent stem-cell-derived O4+ oligodendroglia from MS and healthy donors following their engraftment in the developing CNS. We show that the MS-progeny survives, proliferates and differentiates into oligodendrocytes to the same extent as controls. Quantitative multi-parametric imaging indicates that MS and control oligodendrocytes generate equal amounts of myelin, with bona-fide nodes of Ranvier and promote equal restoration of their host slow conduction. Moreover, the MS-derived progeny expressed oligodendrocyte- and astrocyte-specific connexins and established functional connections with donor and host glial cells. Thus, MS pluripotent stem cell-derived progeny fully integrates into functional axo-glial and glial-glial components, reinforcing the view that the MS oligodendrocyte differentiation block is not due to intrinsic oligodendroglial deficits. These biological findings as well as the fully integrated human-murine chimeric model should facilitate the development of pharmacological or cell-based therapies to promote CNS remyelination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []