Utilizing local phase transformation strengthening for nickel-base superalloys

2021 
Almost 75 years of research has been devoted to producing superalloys capable of higher operating temperatures in jet turbine engines, and there is an ongoing need to increase operating temperature further. Here, a new disk Nickel-base superalloy is designed to take advantage of strengthening atomic-scale dynamic complexions. This local phase transformation strengthening provides the alloy with a three times improvement in creep strength over similar disk superalloys and comparable strength to a single crystal blade alloy at 760 °C. Ultra-high-resolution chemical mapping reveals that the improvement in creep strength is a result of atomic-scale η (D024) and χ (D019) formation along superlattice stacking faults. To understand these results, the energy differences between the L12 and competing D024 and D019 stacking fault structures and their dependence on composition are computed by density functional theory. This study can help guide researchers to further optimize local phase transformation strengthening mechanisms for alloy development. There is an ongoing need to increase the operating temperature of jet engines, requiring new high-temperature materials. Here, local phase transformations at superlattice stacking faults contribute to a three times improvement in creep strength in a Ni-based superalloy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []