Design Minimum Rule-Base Fuzzy Inference Nonlinear Controller for Second Order Nonlinear System

2014 
This research is focused on proposed minimum rule base PID computed torque algorithms with application to continuum robot manipulator. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. Classical Computed Torque Controller (CTC) is robust to control model partly uncertainties and external disturbances. This controller is one of the significant nonlinear methodologies; according to the nonlinear dynamic formulation. One of the main targets in this research is increase the robustness based on the artificial intelligence methodology. Classical computed torque control has difficulty in handling unstructured model uncertainties. One can overcome this problem by combining a computed torque controller and artificial intelligence (e.g. fuzzy logic). To approximate a time-varying nonlinear dynamic system, a fuzzy system requires a large amount of fuzzy rule base. This large number of fuzzy rules will cause a high computation load. To reduce the number of rule base this research is focused on the PD like fuzzy plus integral methodology. This method is applied to continuum robot manipulator to have the best performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    10
    Citations
    NaN
    KQI
    []