Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.

1990 
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30–40 ns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    613
    Citations
    NaN
    KQI
    []