The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2.

2021 
A rare cause of megaloblastic anemia (MA) is thiamine-responsive megaloblastic anemia (TRMA), a genetic disorder caused by mutations in SLC19A2 (encoding THTR1), a thiamine transporter. The study objectives were to (1) functionally characterize selected TRMA-associated SLC19A2 variants and (2) determine whether current prescription drugs associated with drug-induced MA (DIMA) may act via inhibition of SLC19A2. Functional characterization of selected SLC19A2 variants was performed by confocal microscopy and isotopic uptake studies of [3H]-thiamine in HEK293 cells. Sixty-three drugs associated with DIMA were screened for SLC19A2 inhibition in isotopic uptake studies. Three previously uncharacterized SLC19A2 variants identified in TRMA patients exhibited disrupted localization to the plasma membrane along with near-complete loss-of-function. Ten of 63 drugs inhibited SLC19A2-mediated thiamine transport ≥ 50% at screening concentrations; however, with the exception of erythromycin, none was predicted to inhibit SLC19A2 at clinically relevant unbound plasma concentrations. Data from electronic health records revealed reduced levels of thiamine pyrophosphate (TPP) in patients prescribed erythromycin, consistent with inhibition of SLC19A2-mediated thiamine transport. Here, we confirmed the role of three SLC19A2 variants in TRMA pathology. Additionally, we report that inhibition of SLC19A2 is a potential, but uncommon mechanism for DIMA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []