Eulerian modelling of the powder discharge of a silo: Attempting to shed some light on the origin of jet expansion

2020 
Abstract Powder discharging from a silo provokes an emission of dust. To understand and prevent this source of danger, 3D simulations of a silo discharge were performed using an Euler-Euler approach. The impact of the coupling between the flow inside the silo and the granular jet in free-fall is analyzed. Results show that the solid mass flow rate is correctly predicted and that gas back-flowing at the hopper exhaust appears responsible for the formation of a fluctuating and radially expanding jet. However, the radial expansion of the free-falling jet is underestimated. Stochastic fluctuations of the particles velocity at the hopper exhaust are introduced to evaluate their effect on the downstream development of the free-falling jet. These fluctuations are found capable of generating a development of the jet similar to that observed experimentally. This suggests that the granular flow conditions at the hopper exhaust are responsible for the further dispersion of powder.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []