CEP receptor signalling controls root system architecture in Arabidopsis and Medicago

2020 
Root system architecture (RSA) influences the effectiveness of resources acquisition from soils but the genetic networks that control RSA remain largely unclear. We used rhizoboxes, X-ray computed tomography, grafting, auxin transport measurements and hormone quantification to demonstrate that Arabidopsis and Medicago CEP (C-TERMINALLY ENCODED PEPTIDE)-CEP RECEPTOR signalling controls RSA, the gravitropic set-point angle (GSA) of lateral roots (LRs), auxin levels and auxin transport. We showed that soil-grown Arabidopsis and Medicago CEP receptor mutants have a narrower RSA, which results from a steeper LR GSA. Grafting showed that CEPR1 in the shoot controls GSA. CEP receptor mutants exhibited an increase in rootward auxin transport and elevated shoot auxin levels. Consistently, the application of auxin to wild-type shoots induced a steeper GSA and auxin transport inhibitors counteracted the CEP receptor mutant's steep GSA phenotype. Concordantly, CEP peptides increased GSA and inhibited rootward auxin transport in wild-type but not in CEP receptor mutants. The results indicated that CEP-CEP receptor-dependent signalling outputs in Arabidopsis and Medicago control overall RSA, LR GSA, shoot auxin levels and rootward auxin transport. We propose that manipulating CEP signalling strength or CEP receptor downstream targets may provide means to alter RSA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    16
    Citations
    NaN
    KQI
    []