Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid

2020 
Abstract Bombyx mori is an important economic insect. However, the environmental pollution caused by the widespread use of neonicotinoid insecticides has significantly affected the safe production of sericulture. In this paper, we determined the LC50 of acetamiprid, a kind of neonicotinoid insecticides, to 5th instar silkworm larvae, examined its residues in hemolymph and midgut of silkworm after continuous exposure to low-dose of acetamiprid, and investigated the transcription level of detoxifying-related genes and the activity of detoxifying enzymes. The results showed that acetamiprid was highly toxic (24-h LC50, 1.50 mg/L) to silkworm larvae. After continuous exposure to low-dose of acetamiprid (0.15 mg/L), the acetamiprid residue concentrations in hemolymph and midgut were 0.90 and 0.58 μg/mg, respectively, at 48 h, but all decreased at 96 h. At 24 h of acetamiprid exposure, the transcription levels of CYP4M5 and CYP6AB4 and the P450 enzyme activity were significantly enhanced. However, the transcription levels of CarE and CarE-11 and the activity of CarE enzymes were both inhibited by acetamiprid exposure. After 24 h–72 h of acetamiprid exposure, the transcription levels of GSTe3 and GSTd1 were significantly up-regulated, and the GST enzyme activity was also significantly elevated from 48 h to 96 h. Furthermore, the expression levels of FoxO, CncC and Keap1, the key upstream genes of detoxification enzymes, showed a similar trend as the GST genes. These results indicated that acetamiprid was reduced in midgut and the expression of GSTs was upregulated may via FoxO/CncC/Keap1 signaling pathway, which plays a key role in detoxification responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    6
    Citations
    NaN
    KQI
    []