Evolution of a novel and adaptive floral scent in wild tobacco

2019 
Many plants emit diverse floral scents that mediate plant-environment interactions and attain reproductive success. However, how plants evolve novel adaptive floral volatiles remains unclear. Here, we show that in the wild tobacco, Nicotiana attenuata, a dominant species-specific floral volatile (benzyl acetone, BA) that attracts pollinators and deters florivore is synthesized by phenylalanine ammonia-lyase 4 (NaPAL4), isoflavone reductase 3 (NaIFR3), and chalcone synthase 3 (NaCHAL3). Transient expression of NaFIR3 alone in N. attenuata leaves is sufficient and necessary for ectopic foliar BA emissions, and the BA emission level is increased by co-expressing NaIFR3 with NaPAL4 and NaCHAL3. Independent changes in transcription in all three genes contributed to intraspecific variations of floral BA emission. However, among species, the gain-of-expression in NaIFR3 resulted in the biosynthesis of BA that was only found in N. attenuata. This study suggests that novel metabolic pathways associated with adaptation can arise via re-configurations of gene expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []