Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution
2001
The long-term effects of a standard lactate-buffered dialysis fluid and a new, two-chamber, bicarbonate/lactate-buffered dialysis fluid (with fewer glucose degradation products and a neutral pH) were compared in an in vivo peritoneal exposure model. Rats were given daily injections, via an access port, of 10 ml of standard solution or bicarbonate/lactate-buffered solution for 9 to 10 wk. The omentum, peritoneum, and mesothelial cell layer were screened for morphologic changes. In addition, the bacterial clearing capacity of the peritoneal cells was studied. Significantly more milky spots and blood vessels were observed in the omenta of animals treated with standard solution (P < 0.03 for both parameters). Electron-microscopic analysis demonstrated dramatic changes in the appearance of the vascular endothelial cells of the milky spots and a severely damaged or even absent mesothelium on the peritoneal membrane of the standard solution-treated animals. In contrast, the mesothelium was still present in the bicarbonate/lactate-buffered solution group, although the cells lost microvilli. Both peritoneal dialysis fluids significantly increased the density of mesothelial cells (per square millimeter) on the surface of the liver and the thickness of the submesothelial extracellular matrix of the peritoneum (both P < 0.04 for both fluids versus control). A significantly better ex vivo bacterial clearing capacity was observed with peritoneal cells from the bicarbonate/lactate-buffered solution group, compared with the standard solution group (P < 0.05 in both experiments). These results demonstrate that instillation of bicarbonate/lactate-buffered solution into rats for 9 to 10 wk preserves both morphologic and immune parameters much more effectively, compared with standard solution. These findings may be of considerable clinical importance.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
101
Citations
NaN
KQI