Metamodel-Assisted Fast and Accurate Optimization of an OP-AMP for Biomedical Applications

2012 
The optimized OP-AMPs resulting out of a traditional flows, although may meet the given specifications after consuming significant design cycle time, do not guarantee an optimal system performance. In this paper, a three-step polynomial metamodel-assisted OP-AMP optimization flow is proposed to address these issues. The flow incorporate polynomial metamodeling, Verilog-AMS integration, and a customized Cuckoo Search optimization. To the best of the authors' knowledge, this paper for the first time presents such a design flow for state-of-the art OP-AMP optimization. Highly accurate and ultra-fast (~17000X speedup compared to traditional methods) polynomial metamodels are generated to estimate OP-AMP performance. An OP-AMP meta-macro model is constructed and is integrated into a Verilog-AMS module (called Verilog-AMS-POM) to facilitate fast time-domain simulations. The core optimization module is a customized Cuckoo Search algorithm which produces promising optimized results. The OP-AMP power dissipation is reduced from 252.8 uW to 65.5 uW (3.86X improvement).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    6
    Citations
    NaN
    KQI
    []