Calibration and Validation of Antenna and Brightness Temperatures from Metop-C Advanced Microwave Sounding Unit-A (AMSU-A)

2020 
This study carries out the calibration and validation of Antenna Temperature Data Record (TDR) and Brightness Temperature Sensor Data Record (SDR) data from the last National Oceanic and Atmospheric Administration (NOAA) Advanced Microwave Sounding Unit-A (AMSU-A) flown on the Meteorological Operational satellite programme (MetOp)-C satellite. The calibration comprises the selection of optimal space view positions for the instrument and the determination of coefficients in calibration equations from the Raw Data Record (RDR) to TDR and SDR. The validation covers the analyses of the instrument noise equivalent differential temperature (NEDT) performance and the TDR and SDR data quality from the launch until 15 November 2019. In particular, the Metop-C data quality is assessed by comparing to radiative transfer model simulations and observations from Metop-A/B AMSU-A, respectively. The results demonstrate that the on-orbit instrument NEDTs have been stable since launch and continue to meet the specifications at most channels except for channel 3, whose NEDT exceeds the specification after April 2019. The quality of the Metop-C AMSU-A data for all channels except channel 3 have been reliable since launch. The quality at channel 3 is degraded due to the noise exceeding the specification. Compared to its TDR data, the Metop-C AMSU-A SDR data exhibit a reduced and more symmetric scan angle-dependent bias against radiative transfer model simulations, demonstrating the great performance of the TDR to SDR conversion coefficients. Additionally, the Metop-C AMSU-A data quality agrees well with Metop-A/B AMSU-A data, with an averaged difference in the order of 0.3 K, which is confirmed based on Simultaneous Nadir Overpass (SNO) inter-sensor comparisons between Metop-A/B/C AMSU-A instruments via either NOAA-18 or NOAA-19 AMSU-A as a transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []