Transmission Scheduling for Tandemly-Connected Sensor Networks with Heterogeneous Packet Generation Rates.

2020 
A tandemly-connected multi-hop wireless sensor network model is studied. Each node periodically generates packets in every cycle and relays the packets in a store-and-forward manner on a lossy wireless link between two adjacent nodes. To cope with a considerable number of packet losses, we previously proposed a packet transmission scheduling framework, in which each node transmits its possessing packets multiple times according to a static time-slot allocation to recover or avoid packet losses caused either by physical conditions on links or by interference of simultaneous transmissions among near-by nodes. However, we assumed that the packet generation rate is identical over all nodes, which is not always realistic. Therefore, in this paper, we enhance our work to the case of heterogeneous packet generation rates. We derive a static time-slot allocation maximizing the probability of delivering all packets within one cycle period. By using an advanced wireless network simulator, we show its effectiveness and issues to be solved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []