β-Diketone boron difluoride dye-functionalized conjugated microporous polymers for efficient aerobic oxidative photocatalysis

2021 
Incorporation of organic chromophores into conjugated micro/mesoporous polymers (CMPs) provides a promising avenue for developing recyclable heterogeneous photocatalysts by overcoming tedious separation and low reusability of homogeneous organic dye-based photocatalysts. However, the design principle and the underlying structure–property relationship for fabricating and selecting various organic dye-embedded CMPs for efficient photocatalysis have not been well-constructed so far. In this study, we described the rational fabrication of two new CMPs via the one-step Sonogashira coupling using β-diketone boron difluoride dye as the key linker and commonly used building blocks (triphenylamine/triphenylbenzene) as the cores. The resulting boron-dye containing CMPs were efficiently employed as the metal-free photocatalysts in two typical aerobic oxidative organic transformations including coupling of benzylamine and oxidation of aryl boronic acids to corresponding aryl phenols, which have never been explored with other boron-dye-embedded CMPs. They exhibited superior photocatalytic performance compared to their boron-free counterparts due to their wide visible-light absorption, narrow optical bandgaps, and extended π-conjugation due to boron-complexation. The present study establishes β-diketone boron difluoride dyes as efficient building blocks for fabricating new CMP-based photocatalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []