Digital Process for advanced VLSI's and Surface Reaction Study

1991 
Digital etching was carried out by repeating the fundamental reaction cycles of adsorption, reaction and desorption for fluorine(F) or chlorine(Cl)/Si systems. In the F/Si case, atomic layer etching of Si(100) was achieved by adsorption of F atoms produced by a remote discharge of F 2 /99.8%He on the cooled Si surface and subsequent Ar* ion (≅20eV) irradiation. The digital method revealed that the cryogenic etching occurred by ion bombardment on physiosorbed F atoms on the cooled Si surface. Adsorption of Cl atoms on Si at room temperature allowed self-limiting reaction with etch rate of 0.4 A/cycle. The etching increased rapidly over 40 V of substrate voltage. Secondly, reaction of TES (triethylsilane) with hydrogen(H) atoms was also found to lead to conformal CVD (Chemical Vapor Deposition) of Si film involving organic species. Then Si oxide and nitride films were formed by digital CVD which repeated a cycle of first deposition of this film and subsequent its oxidation and nitridation. The electrically excellent multilayer stacked oxide and nitride film was filled in to deep trench. Insitu FTIR-ATR spectroscopy demonstrated that the surface reaction was predominant for the TES/H process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []