Linear and Nonlinear 3D-QSAR Approaches in Tandem with Ligand-Based Homology Modeling as a Computational Strategy to Depict the Pyrazolo-Triazolo-Pyrimidine Antagonists Binding Site of the Human Adenosine A2A Receptor.

2008 
The integration of ligand- and structure-based strategies might sensitively increase the success of drug discovery process. We have recently described the application of Molecular Electrostatic Potential autocorrelated vectors (autoMEPs) in generating both linear (Partial Least-Square, PLS) and nonlinear (Response Surface Analysis, RSA) 3D-QSAR models to quantitatively predict the binding affinity of human adenosine A3 receptor antagonists. Moreover, we have also reported a novel GPCR modeling approach, called Ligand-Based Homology Modeling (LBHM), as a tool to simulate the conformational changes of the receptor induced by ligand binding. In the present study, the application of both linear and nonlinear 3D-QSAR methods and LBHM computational techniques has been used to depict the hypothetical antagonist binding site of the human adenosine A2A receptor. In particular, a collection of 127 known human A2A antagonists has been utilized to derive two 3D-QSAR models (autoMEPs/PLS&RSA). In parallel, using a rho...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    3
    Citations
    NaN
    KQI
    []