Origin of the electrocatalytic activity in carbon nanotube fiber counter-electrodes for solar-energy conversion

2021 
However, their electrocatalytic activity is still poorly understood. This work deciphers the origin of the catalytic activity of counter-electrodes (CEs)/current collectors made of self-standing carbon nanotubes fibers (CNTfs) using Co$^(+2)$/Co$^(+3)$ redox couple electrolytes. This is based on comprehensive electrochemical and spectroscopic characterizations of fresh and used electrodes applied to symmetric electrochemical cells using platinum-based CEs as a reference. As the most relevant findings, two straight relationships were established: i) the limiting current and stability increase rapidly with surface concentration of oxygen-containing functional groups, and ii) the catalytic potential is inversily related to the amount of residual metallic Fe catalyst nanoparticles interspersed in the CNTf network. Finally, the fine tune of the metallic nanoparticle content and the degree of functionalization enabled fabrication of efficient and stable dye-sensitized solar cells with cobalt electrolytes and CNTf-CE outperforming those with reference Pt-CEs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    0
    Citations
    NaN
    KQI
    []